refiner ======= .. py:module:: refiner Attributes ---------- .. autoapisummary:: refiner.plugin_name Classes ------- .. autoapisummary:: refiner.MyPlugin Module Contents --------------- .. py:data:: plugin_name :value: 'refiner' .. py:class:: MyPlugin A Python based gstreamer plugin template. Enables the user to: - Accept incoming buffers from dynamic pads - Define any custom plugin runtime logic User has to only override the run() function .. py:attribute:: mla .. py:attribute:: fmap1_shape :value: [1, 80, 192, 256] .. py:attribute:: fmap2_shape :value: [1, 80, 192, 256] .. py:attribute:: netlist0_shape :value: [1, 80, 192, 128] .. py:attribute:: netlist1_shape :value: [1, 40, 96, 128] .. py:attribute:: netlist2_shape :value: [1, 20, 48, 128] .. py:attribute:: inp_list0_shape :value: [1, 80, 192, 384] .. py:attribute:: inp_list1_shape :value: [1, 40, 96, 384] .. py:attribute:: inp_list2_shape :value: [1, 20, 48, 384] .. py:attribute:: coords0_shape :value: [1, 80, 192, 2] .. py:attribute:: coords1_shape :value: [1, 80, 192, 2] .. py:attribute:: flowup_shape :value: [1, 80, 192, 1] .. py:attribute:: upmask_shape :value: [1, 80, 192, 144] .. py:attribute:: coords0_shape_aligned :value: [1, 80, 192, 8] .. py:attribute:: coords1_shape_aligned :value: [1, 80, 192, 8] .. py:attribute:: flowup_shape_aligned :value: [1, 80, 192, 8] .. py:attribute:: fmap1 .. py:attribute:: fmap2 .. py:attribute:: net_list_0 .. py:attribute:: net_list_1 .. py:attribute:: net_list_2 .. py:attribute:: inp_list_0 .. py:attribute:: inp_list_1 .. py:attribute:: inp_list_2 .. py:attribute:: coords0 .. py:attribute:: coords1 .. py:attribute:: unpack_shapes .. py:method:: run(input_buffers: List[python_plugin_template.SimaaiPythonBuffer], output_buffer: bytes) -> None Define your plugin logic HERE Inputs: input_buffers List[SimaaiPythonBuffer]: List of input buffers Object of class SimaaiPythonBuffer has three fields: 1. metadata MetaStruct Refer to the structure above 2. data bytes - raw bytes of the incoming buffer 3. size int - size of incoming buffer in bytes .. py:method:: unpack_buffer(single_buffer) .. py:method:: preprocess(l_image, r_image) .. py:method:: run_model(fmap1, fmap2, net_list_0, net_list_1, net_list_2, inp_list_0, inp_list_1, inp_list_2, coords0, coords1, iter) .. py:method:: preprocess_data_refiner(tensor)