sima_utils.transformer.model.whisper_model
Classes
Whisper model implementation. |
Module Contents
- class sima_utils.transformer.model.whisper_model.WhisperModel
Whisper model implementation.
- use_future_token_mask: bool
- static from_hf_cache(model_name: str, hf_cache_path: pathlib.Path | str, onnx_path: pathlib.Path | str, sima_path: pathlib.Path | str, use_future_token_mask: bool) WhisperModel
Creates a WhisperModel object from cached Hugging Face model.
- Parameters:
model_name – Model name. This is used as a file name prefix for the generated onnx and model sdk files.
hf_cache_path – Path to the cached Hugging Face model.
onnx_path – Path to the generated ONNX files.
sima_path – Path to the generated SiMa files.
- Returns:
A WhisperModel object for file generation or evaluation.
- gen_files(gen_mode: sima_utils.transformer.model.base.FileGenMode, *, precision: sima_utils.transformer.model.base.FileGenPrecision | dict[str, sima_utils.transformer.model.base.FileGenPrecision] | None = None, log_level: int = logging.NOTSET, num_processes: int = 1, part: str | None = None, part_idx: int | None = None, resume: bool = False)
Generates files based on the provided file generation mode.
- Parameters:
gen_mode – File generation mode.
Precision – The precision to be used for Model SDK quantization mode.
log_level – Logging level.
part – Name of the part to be generated.
part_idx – Specific index of the part to be generated. For pre/post model, the index is the layer index; for cache model, the index is the token index.
resume – Generate the files if missing.
- evaluate(eval_mode: sima_utils.transformer.model.base.EvalMode, audio: pathlib.Path | str | numpy.ndarray, language: str | None = None) str
Evaluates the model with the input audio in the specified mode.
- Parameters:
eval_mode – Evaluation mode.
audio – Path to the audio or preprocessed audio in numpy array.
- Returns:
Generated output text.
- run_model(eval_mode: sima_utils.transformer.model.base.EvalMode, ifms: list[numpy.ndarray]) list[numpy.ndarray]
- get_token_embeddings_tensor() numpy.ndarray
- get_position_embeddings_tensor() numpy.ndarray
- gen_devkit_files(resume: bool = False)
Generates files for devkit.