refiner

Attributes

plugin_name

Classes

MyPlugin

A Python based gstreamer plugin template. Enables the user to:

Module Contents

refiner.plugin_name = 'refiner'
class refiner.MyPlugin

A Python based gstreamer plugin template. Enables the user to: - Accept incoming buffers from dynamic pads - Define any custom plugin runtime logic User has to only override the run() function

mla
fmap1_shape = [1, 80, 192, 256]
fmap2_shape = [1, 80, 192, 256]
netlist0_shape = [1, 80, 192, 128]
netlist1_shape = [1, 40, 96, 128]
netlist2_shape = [1, 20, 48, 128]
inp_list0_shape = [1, 80, 192, 384]
inp_list1_shape = [1, 40, 96, 384]
inp_list2_shape = [1, 20, 48, 384]
coords0_shape = [1, 80, 192, 2]
coords1_shape = [1, 80, 192, 2]
flowup_shape = [1, 80, 192, 1]
upmask_shape = [1, 80, 192, 144]
coords0_shape_aligned = [1, 80, 192, 8]
coords1_shape_aligned = [1, 80, 192, 8]
flowup_shape_aligned = [1, 80, 192, 8]
fmap1
fmap2
net_list_0
net_list_1
net_list_2
inp_list_0
inp_list_1
inp_list_2
coords0
coords1
unpack_shapes
run(input_buffers: List[python_plugin_template.SimaaiPythonBuffer], output_buffer: bytes) None

Define your plugin logic HERE Inputs: input_buffers List[SimaaiPythonBuffer]: List of input buffers Object of class SimaaiPythonBuffer has three fields: 1. metadata MetaStruct Refer to the structure above 2. data bytes - raw bytes of the incoming buffer 3. size int - size of incoming buffer in bytes

unpack_buffer(single_buffer)
preprocess(l_image, r_image)
run_model(fmap1, fmap2, net_list_0, net_list_1, net_list_2, inp_list_0, inp_list_1, inp_list_2, coords0, coords1, iter)
preprocess_data_refiner(tensor)